Ren’Py in Scala

Paul Tan and Bing You
https://github.com/pyokagan/DokiDokiCS4215

https://github.com/pyokagan/DokiDokiCS4215

What is Ren’Py?

* A framework for writing visual
novels.
e Visual novels: Interactive text-based
stories aided by visuals and audio.
* Implemented in Python

* DSL: The Ren’Py Language

* Alanguage tailored towards writing
screenplay interspersed with game
logic.

I've known Sylvie since
she's always been

we were kids. She'
a good friend to me.

s got a

big heart and

script.rpy

Declare characters used by this game.
= Character(_ ("Sylvie"), color="#c8ffc8")
define m = Character(—("Me"), color="#c8c8ff")

The game starts here.
label start: o
scene bg uni with fade . . .
"When we come out of the university, I spot her right away."
show sylvie green normal with dissolve i
“Sylvie’s got a big heart and she's always been a good friend to me."
menu ;
"As soon as she catches my eye, I decide..."
"To ask her right away.":
jump rightaway
"To ask her later.":
jump later

label rightaway: .
show sylvie green smile _
m "Are” you_going home now? Wanna walk back with me?"
s "Why not?")
scene” black with dissolve
"{b}Good Ending{/b}."
e

return
label later: . . .
"I can't get up the nerve to ask right now. With a gulp, I decide to ask her later.”
scene black with dissolve
"{b}Bad Ending{/b}."

Ren’Py Script vs Stage Script

SCENE 1

The football-club locker-room. The locker-room is dark and empty. The main lights are Stage Directions
switched on. OLD JOHN and TONY enter stage right. OLD JOHN is walking with the help of a stick.

OLD JOHN New paint job is it?

New paint. New benches. New lockers. Even got new soap for the showers.

Character

label rightaway: Stage Directions
show sylvie green smile
m "Are you going home now? Wanna walk back with me?"
s "Why not?"

ene black with dissolve

b}Good Ending{/b}."

mL
A5)

Say Nodes

Waits for user input before continuing

with execution.

Declare characters used by this game.
define s = Character _E"Sy1v1e") color="#c8ffc8")
define m = Character(—("Me"), color="#c8c8ff")

The game starts here.
label start: o
scene bg uni with fade)) .
"When we come out of the university, I spot her right e
show sylvie green normal with dissolve 1 Wl a0 v
“Sylvie’s got a big heart and she's always been a goodiss y L
menu,; 4 >
"As soon as she catches my eye, I decide..."
"To ask her right away.":
jump rightaway
"To ask her later.":
jump later

n we come out of the university, | spot her right away.

label rightaway: .
show sylvie green smile .
m :ﬁﬂe yo%3g01ng home now? Wanna walk back with me?"
y npnots- | :
cene black with dissolve
‘{b}Good Ending{/b}."
return

label later: . . .
"I can't get up the nerve to ask right now. With a gulp, I decide to ask her later.”
scene black with dissolve

n n

Image Nodes

Declare characters used by this game.
define s = Character(_ ("Sylvie"), color="#c8ffc8")
define m = Character(—("Me"), color="#c8c8ff")

The game starts here.
label start: o
scene bg uni with fade]] .
“"When we come out of the university, I spot her ri
show sylvie green normal with dissolve X
“Sylvie’s got a big heart and she's always been a FIRLL

menhu; . —
"As soon as she catches my eye, I decide...” :
"To ask her right away.":
Jump r‘lghtaway = I've k Sylvie si kids. She' big hear d
"To ask her later.": = belolediey 3 - Lo
jump later i

label rightaway: .
show sylvie green smile _
m "Are” you_going home now? Wanna walk back with me?"
s "Why not?"™)
scene black with dissolve
"{b}Good Ending{/b}."
e

return
label later: . . .
"I can't get up the nerve to ask right now. With a gulp, I decide to ask her later.”
scene black with dissolve
"{b}Bad Ending{/b}."

Menu Node

Declare characters used by this game.

define s = Character(_ ("Sylvie"), color="#c8ffc8")

define m = Character(—("Me"), color="#c8c8ff") |
b1

The game starts here. 7;% T
label stargz L ith fad e e
scene bg uni wi ade _ _ L i‘ i AaaCiTay i
When wé come out of the university, I spot her rigld '!.".L’,l ‘\‘ . il £
W———— (& — =
il . -

show sylvie green normal with dissolve ~
“Svlvie’s got a big heart and she's alwavs been a e
menu ; »
"As soon_as she catches my eye, I decide...”
"To ask her right away.":
jump rightaway
"To ask her later.":
jump later

n as she catches my eye, | decide...

label rightaway: .
show sylvie green smile _
m "Are”you going home now? Wanna walk back with me?”

s "Why not?™ _
scene” black with dissolve
"{b}Good Ending{/b}."
return
label later: . . .
"I can't get up the nerve to ask right now. With a gulp, I decide to ask her later.”
scene black with dissolve
"{b}Bad Ending{/b}."

Label Nodes

Declare characters used by this game.
define s = Character(_ ("Sylvie"), color="#c8ffc8")
Character(—("Me"), color="#c8c8ff")

- hlj\‘ I o il “iyﬁ
The game starts here. 'Q% AL
label stargz L ith fad i e
scene bg uni wi ade _ _ i i‘ WL AR T
When wé come out of the university, I spot her rigld '!.".L’,l ‘\‘ . il £
W———— (& — =
il . -

show sylvie green normal with dissolve ~
“Sylvie’s got a big heart and she's always been a W
menu ; v
"As soon as she catches my eye, I decide...”
"To ask her right away.":
jump rightaway
"To ask her later.":
jump later

n as she catches my eye, | decide...

label rightaway: .
show sylvie green smile _
m "Are”you going home now? Wanna walk back with me?”

s "Why not?™ _
scene” black with dissolve
"{b}Good Ending{/b}."
return
label later: . . .
"T can't get up the nerve to ask right now. With a gulp, I decide to ask her later.”
scene black with dissolve
"{b}Bad Ending{/b}."

Implementation

®
Syntax Tree
Implemented with

classical parser +
interpreter in Python

£ Scala

Now, let’s build it in Scala...

script.rpy

Declare characters used by this game.
= Character(_ ("Sylvie"), color="#c8ffc8")
define m = Character(—("Me"), color="#c8c8ff")

The game starts here.
label start: o
scene bg uni with fade . . .
"When we come out of the university, I spot her right away."
show sylvie green normal with dissolve i
“Sylvie’s got a big heart and she's always been a good friend to me."
menu ;
"As soon as she catches my eye, I decide..."
"To ask her right away.":
jump rightaway
"To ask her later.":
jump later

label rightaway: .
show sylvie green smile _
m "Are” you_going home now? Wanna walk back with me?"
s "Why not?")
scene” black with dissolve
"{b}Good Ending{/b}."
e

return
label later: . . .
"I can't get up the nerve to ask right now. With a gulp, I decide to ask her later.”
scene black with dissolve
"{b}Bad Ending{/b}."

Game.scala ’Scala

object Game {
// Declare characters used by this game.
val s = new Character("Sylvie", color = "#abcdef")
val m = new Character("Me", color = "#c8c8ff")

// The game starts here.
def run2>: Future[Unit] =

scene("bg uni") |>

"When we come out of the un1veP51ty, I spot her right away." |[>

show(sy1v1e green normal") | >

"Sylvie's got a big heart and she's always been a good friend to me. >

menu('‘As soon as she catches my eye, I decide...",
"To ask her right awa{ s rlghtaway),
"To ask her later. ater))
def rightaway(): Future[Unlt] =
show% 'sylvie green smile") |>
m :< "Are you going home now> Wanna walk back with me?" |[>
s :< "Why not? | >
sceneBlack()
"Good Ending."

def later(): Future[Unit] =

"I can't Eet up the nerve to ask right now. With a gulp, I decide to ask her later."” |>
sceneBlack() |>

"Bad Ending."

What we need...

* A good implementation » ! Scala

programming language

* Windowing / User Input —

- A\ » GLFW
4 o&) LWJGL
- Lightweight Java Game Library

* Graphics rendering

penG Lo Java bindings for

GLFW, OpenGL

=

Application architecture

Game

High level DSL

Enci bsvst Scene Events
NeINe SUbsystems 2d scenegraph Event callback handling

[WJGL

Lightweight Java Game Library

4

Scene subsystem

y

* Models 3d space in which objects
(scene nodes) can be placed in a
declarative manner.

e Scene library takes care of
rendering the objects (with 2d
projection) on the screen using
OpenGL.

* Scene nodes have position,
orientation, scale.

Scene nodes

val squareNode = new Scene.SquareNode()
squareNode.pose.scale.set(100)
Scene += squareNode

val imageNode = new Scene.ImageNode("sylvie blue giggle")
Scene += imageNode

val textNode = new Scene.TextNode("Hello World!")
Scene += textNode

Hello World!

Scene Rendering

* OpenGL calls are executed based on contents of the scene graph, so
your objects are rendered on screen.

val vao = glGenVertexArrays()

glBindVertexArray(vao)

glBindBuffer(GL_ARRAY_BUFFER, arrayBuf)
glBufferData(GL_ARRAY_BUFFER, vertexData, GL STATIC DRAW)
val aPosLoc = program.getAttriblLocation("aPos")
glVertexAttribPointer(aPosLoc, 2, GL FLOAT, false, 8, 9)
glEnableVertexAttribArray(aPoslLoc)
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, QuadElem.glBuf)
program.use()

program.setUniform("uMVPMatrix", uMVPMatrix)
program.setUniform("uColor", uColor)
program.setUniform("uOpacity", uOpacity)
glDrawElements(GL TRIANGLES, 6, GL UNSIGNED SHORT, ©)
glBindVertexArray(0)

val squareNode = new Scene.SquareNode()
squareNode.pose.scale.set(100f)
Scene += squareNode

penGL.

Events

* The Events subsystem maintains a set of callbacks for each event type

object Events {
val onKeyPress = scala.collection.mutable.HashSet.empty[Key => Unit]
val onMouseButtonPress = scala.collection.mutable.HashSet.empty[MouseButton => Unit]
val onTick = scala.collection.mutable.HashSet.empty[() => Unit]

* E.g. to register a event handler:

Events.onKeyPress += (key => println("Key was pressed: " + key))

Events — Game loop

* The Events subsystem also manages the event loop, which is the
central control flow construct of the program

while (!glfwWindowShouldClose(window)) Virtually an infinite loop — runs for
Events.runCallbacks() the entire lifetime of the program

(until the user closes the window)
// Logic ticks
val currentTime = glfwGetTime()
while (lastTick + TickPeriod < currentTime) {
Events.tick()
lastTick += TickPeriod

} Calls onKeyPress callbacks on key press,
// Render onMouseButtonPress callbacks when mouse
Scene.render() button is pressed, etc.
glfwSwapBuffers(window) Must be called periodically to process user

glfwPollEvents() input in a timely manner.

Application architecture

Game

High level DSL

Enci bsvst Scene Events
NeINe SUbsystems 2d scenegraph Event callback handling

[WJGL

Lightweight Java Game Library

4

Type of DSL Implementations

* Standalone DSLs
* Deeply-embedded DSLs
* Shallowly-embedded DSLs

Standalone DSL

 What RenPy did: separate parser
and interpreter

* Lots of work to implement

* |IDE, tooling support, syntax
highlighting, debuggers...

Script.rpy renpy.parser -

Abstract
Syntax Tree

renpy.execution

Deep embeddings of DSLs

e Construct an AST. data Expr :: = where
i) Val :: Integer — Expr
* AST is then traversed for evaluation. Add : Expr — Expr — Expr

eval :: Expr — Integer

Benefits: eval (Val n) =n
e Can arbitrarily transform the AST eval (Add x y) = eval = + eval y
for e.g. optimization, implementing
complex non-compositional 3+4 —— Add (Val 3) (Val 4)
semantics . - | . %
Cons:

* More implementation work needed

Shallow embeddings of DSLs

e No AST constructed — terms are
immediately evaluated

Benefits:

* Implementation is trivial and
compact

Cons:

* Not as flexible — semantics must
be compositional (depends only
on semantics of components)

type Expr = Integer

val :: Integer — Expr
valn =mn

add :: Expr — Expr — Expr
add r y=x+y

We aren’t trying to do anything fancy, so let’s

try implementing it using shallow embedding.

Overall Approach

* Use shallow embedding for implementation.
* Implement DSL syntax directly using evaluation functions

e Desired semantics: Asynchronous Actions
* We want to have different actions occurring concurrently (e.g. animation)
* At the same time, some actions need to wait on each other (e.g. wait for user input)
* Use existing Scala infrastructure: Futures and Promises

DSL API Design:

object Dsl { . .
case class Character(name: String, color: String)

How to implement say(), show(),

// Say a message and wait for user ipput .
def say(char: Character, msg: String): Future[Unit] menu()?
def say(msg: String): Future[Unit]

// Show g _background imgge)
def show(image: Texture): Future[Unit]

// AsR the user to make a choice. Execute the associated function and wait on 1its

completion. . .) .)
def menu(msg: String, choices: (String, () => Future[Unit])): Future[Unit]

Futures and Promises

* Future: Read-only placeholder containing a value that may not yet
exist.

* Promise: Writable container that completes a Future

Futures and Promises

(1) Create Promise containing Future

val p = Promise[T]()

val f = p.future (2) Run producer and consumer

asynchronously
val producer = Future {

val r = createResource()
p success r (3) producer creates resource and

continueProducerExecution() continues execution
val consumer = Future { (4) consumer use up resource and
startConsumerExecution() continues execution

f foreach { r =>
consumeResource()

} producer execution is not blocked by consumer

}

consumer can receive resource before producer finishes execution

Implementation building blocks

* Create fundamental asynchronous execution functions based on
futures and promises

= waitForMouseButtonPress(), nextEvent()

e Build DSL functions based on said functions
" say(), show(), scene(), menu()

waitForMouseButton()

(1) Create promise containing Future

def waitForMouseButtonPress()(implicit ec: that will be completed |ater.

val promise = Promise[Unit]()
val cb = new Functionl[MouseButton, Unit] {
def apply(mouseButton: MouseButton): Unit = {
if (mouseButton == MouseButtonLeft) {
Events.onMouseButtonPress -= this
promise.success(mouseButton)

}
}

} (5) Complete the Future

(4) Remove mouse button press
callback from our events system

Events.onMouseButtonPress += cb

promise.future (2) Register mouse button press

callback with our events system

(3) Return the Future

val charName = new Scene.TextNode { val msgNode = new Scene.TextNode {

maxWidth = 700f / 0.28f maxWidth = 700.0f / 0.25f
pose.position.set(-380f, -205f, 20f) pose.position.set(-360f, -250f, 20f)
pose.scale.set(0.28f, 0.28f, 1f) pose.scale.set(0.25f, 0.25Ff, 1f)

}

Are you going home now? Wanna walk back with me?

\ val textbox = new Scene.ImageNode("textbox") {
pose.position.set(0f, -268f, 16f)

}

say()

say()

(1) Add textbox, charName, msgNode to

Scene graph so that they will be
displayed, and set the msgNode text,
charName text and color

def say(char: Character, msg: String)(implicit
Scene ++= Seq(textbox, charName, msgNode)
msgNode.text = msg

charName.text = char.name
charName.color = parseHexColour(char.c

Events.waitForMouseButtonPress()y-T1latMap(_=> {
Scene --= Seq(textbox, charName, msgNode)
Events.nextEvent()
} H) (3) Cleanup: Remove textbox, charName,

msgNode from scene graph so they are not
displayed any more.

Sequencing Futures with flatMap

* Future provides a f1latMap () method allowing us to sequence
asynchronous operations.

def flatMap[S](f: (T) = Future[S]): Future[S]

Creates a new future by applying a function to the successful result of this future, and returns the result of
the function as the new future.

say("a").flatMap(() => say("b"))

Say “@”, wait for user input, and then say “b”.

Problem: Lots of flatMaps...

def run(): Future[Unit] =
scene("bg uni") flatMap
=> say("When we come out of the university, I spot her right away.")) flatMap
=> show("sylvie green normal™)) flatMap
=> say("Sylvie's got a big heart and she's always been a good friend to me.")) flatMap
=> menu("As soon as she catches my eye, I decide...",
("To ask her right away.", rightaway),
("To ask her later.", later)))

AN N NN
I

The game starts here.
label start: o
scene bg uni with fade)))
"When wé come out of the university, I spot her right away."
show sylvie green normal with dissolve .
“Sylvie’s got a big heart and she's always been a good friend to me."
menu ;
"As soon as she catches my eye, I decide..."
"To ask her right away.":
jump rightaway
"To ask her later.":
jump later

a

Problem: Lots of flatMaps...

def run(): Future[Unit] =
scene("bg uni") flatMap
=> say("When we come out of the university, I spot her right away.")) flatMap
=> show("sylvie green normal™)) flatMap
=> say("Sylvie's got a big heart and she's always been a good friend to me.")) flatMap
=> menu("As soon as she catches my eye, I decide...",
("To ask her right away.", rightaway),
("To ask her later.", later)))

AN N NN
I

The game starts here.
label start: o
scene bg uni with fade)))
"When wé come out of the university, I spot her right away."
show sylvie green normal with dissolve .
“Sylvie’s got a big heart and she's always been a good friend to me."
menu ;
"As soon as she catches my eye, I decide..."
"To ask her right away.":
jump rightaway
"To ask her later.":
jump later

a

Solution: Use Scala implicit classes to
implement a | > infix operator

object Dsl
] { Use By-Name parameter -- Only evaluate RHS once the LHS has completed.

implicit class HeEaEEmEEs
def |>[S](b: => Future[S]):

Future[S] =

a.flatMap(_ => b)
} | > starts with | which has the lowest
precedence (for symbol infix operators) in
} Scala

def run(): Future[Unit] =
scene("bg uni") |>
say("When we come out of the university, I spot her right away.") [>
show("sylvie green normal") |>
say("Sylvie's got a big heart and she's always been a good friend to me.") |[>
menu("As soon as she catches my eye, I decide...",
("To ask her right away.", rightaway),
("To ask her later.", later))

Problem: say(), say(), say(), say()....

def run(): Futur‘egUnlt] ’Scala

scene("bg uni >
say("When we come out of_the university, I spot her right away.") [>
show X1v1e green normal™) |>
vie's big hear and she S always been a good frlend to me.") |>

menu Xs soon as she catches my e¥ decid R
o ask her right awaX t’ Plg away ,
a

"To ask her late

label start:

scene bg uni with fade
"When we come out of the university, I spot her right away.'
show sylvie green normal with dissolve
“Sylvie’s got a big heart and she's always been a good friend to me.”"
menu:;

“"As soon as she catches my eye, I decide.

"To ask her right away.

. jump rlghtaway

To ask her later?.

jump later

Problem: say(), say(), say(), say()....

def run(): Futur‘egUnlt] ’Scala

scene("bg uni >
say ("When we come out of_the university, I spot her right away.") [>

show(le1e green normal") |>
X vie's got a big hear and she S always been a good frlend to me.") |>
menu S soon as she catches my e¥ decid Uy
o ask her right awaX 5 Plg away ,
"To ask her later. ate

label start:
scene bg uni with fade
"When we come out of the university, I spot her right away.'
show sylvie green normal with dissolve
“Sylvie’s got a big heart and she's always been a good friend to me.”"
menu:
“"As soon as she catches my eye, I decide.
"To ask her right away.
. jump rlghtaway
To ask her later?.
jump later

Must use say() in Scala but just plain

strings will do in Ren’Py — Scala version
has more syntactic overhead

Solution: Use Scala implicit ¢
implement |> infix operator-

object Dsl {

implicit class FutureWithDsl[T](a: Future[T]) {
def |>[S](b: => Future[S]): Future[S] =
a.flatMap(_ => b)
def |>(b: String): Future[Unit] =
a.flatMap(_ => say(b))
}

implicit class StringWithDsl1[T](a: String) {
def [>[S](b: => Future[S]): Future[S] =
say(a).flatMap(_ => b)
def [>(b: String): Future[Unit] =
say(a).flatMap(_ => say(b))

asses (again) to

‘or Strings

Solution: Use Scala implicit classes (again) to
implement |> infix operator for Strings

def run(): Future[Unit] =

scene("bg uni") |[>
"When we come out of the university, I spot her right away." |> ES(ZEiléi

show("sylvie green normal") |>
"Sylvie's got a big heart and she's always been a good friend to me.
menu("As soon as she catches my eye, I decide...",

("To ask her right away.", rightaway),

("To ask her later.", later))

| >

label start:
scene bg uni with fade
"When we come out of the university, I spot her right away."
show sylvie green normal with dissolve
“Sylvie’s got a big heart and she's always been a good friend to me."
menu:
"As soon as she catches my eye, I decide...”
"To ask her right away.":
jump rightaway
"To ask her later.":
jump later

Problem: say() with characters

val s = new Character("Sylvie", color = "#abcdef")
val m = new Character("Me", color = "#c8c8ff")

def rightaway(): Future[Unit] = !Scala

show("sylvie green smile") |[>

say(m, "Are you going home now? Wanna walk back with me?") |>
say(s, "Why not?") |[>

sceneBlack() |>

"Good Ending."

define s = Character(_("Sylvie"), color="#c8ffc8")
define m = Character(_("Me"), color="#c8c8ff")

label rightaway:
show sylvie green smile
m "Are you going home now? Wanna walk back with me?"
s "Why not?"
scene black with dissolve
"{b}Good Ending{/b}."
return

Problem: say() with characters

val s = new Character("Sylvie", color = "#abcdef")
val m = new Character("Me", color = "#c8c8ff")

def rightaway(): Future[Unit] = !Scala

show("sylvie green smile") |[>

say(m, "Are you going home now? Wanna walk back with me?") [>
say(s, "Why not?") |[>

sceneBlack() |>

"Good Ending."

define s = Character(("Svlvie"). color="#c8ffc8")
OLD JOHN New paint job is it?

TONY New paint. New benches. New lockers. Even got new soap for the showers.

show sylvie green smile

m "Are you going home now? Wanna walk back with me?"
s "Why not?"

scene black with dissolve

"{b}Good Ending{/b}."

return

Solution: Implement :< infix operator for
characters

* Scala’s syntax doesn’t allow us to implement Ren’Py’s exact syntax,
but we can get close by defining a lightweight infix operator :<

case class Character(name: String, color: String) {
def :<(m: String): Future[Unit] =
say(this, m)
}

def rightaway(): Future[Unit] =
show("sylvie green smile") |>
m :< "Are you going home now? Wanna walk back with me?" |>
s :< "Why not?" |>
sceneBlack() |>
"Good Ending."

Wrapping up

e Scala doesn’t allow us to implement Ren’Py’s syntax directly, however with generous use
of infix operators we can get pretty close to the spirit of a stage play script.

SCENE 1

The football-club locker-room. The locker-room is dark and empty. The main lights are
switched on. OLD JOHN and TONY enter stage right. OLD JOHN is walking with the help of a stick.

OLD JOHN New paint job is it?

TONY New paint. New benches. New lockers. Even got new soap for the showers.

Stage directions use standard

i . function call syntax so that
def rightaway(): Future[Unit] = they stand out.

show("sylvie green smile")
Characters m :< "Are you going home now? Wanna walk back with me?" |>
lined up on the s :< "Why not?" |>
left sceneBlack() |>
"Good Ending."

Light-weight syntax for text (great

for text-heavy novels).

Conclusion

* We set out on a grand adventure to re-implement the RenPy DSL in
the best programming language in the world (Scala)

* To do that, we first implemented a simple 2d rendering and event
engine using LWJGL.

* Then, we used the shallow embedding implementation approach to
implement our high level DSL.

* Used Scala’s Futures and Promises to implement our DSL's async
semantics.

* Gratuitously used Scala’s implicit classes to define our own infix
operators that can be used with existing Scala types.

script.rpy

Declare characters used by this game.
= Character(_ ("Sylvie"), color="#c8ffc8")
define m = Character(—("Me"), color="#c8c8ff")

The game starts here.
label start: o
scene bg uni with fade . . .
"When we come out of the university, I spot her right away."
show sylvie green normal with dissolve i
“Sylvie’s got a big heart and she's always been a good friend to me."
menu ;
"As soon as she catches my eye, I decide..."
"To ask her right away.":
jump rightaway
"To ask her later.":
jump later

label rightaway: .
show sylvie green smile _
m "Are” you_going home now? Wanna walk back with me?"
s "Why not?")
scene” black with dissolve
"{b}Good Ending{/b}."
e

return
label later: . . .
"I can't get up the nerve to ask right now. With a gulp, I decide to ask her later.”
scene black with dissolve
"{b}Bad Ending{/b}."

Game.scala ’Scala

object Game {
// Declare characters used by this game.
val s = new Character("Sylvie", color = "#abcdef")
val m = new Character("Me", color = "#c8c8ff")

// The game starts here.
def run2>: Future[Unit] =

scene("bg uni") |>

"When we come out of the un1veP51ty, I spot her right away." |[>

show(sy1v1e green normal") | >

"Sylvie's got a big heart and she's always been a good friend to me. >

menu('‘As soon as she catches my eye, I decide...",
"To ask her right awa{ s rlghtaway),
"To ask her later. ater))
def rightaway(): Future[Unlt] =
show% 'sylvie green smile") |>
m :< "Are you going home now> Wanna walk back with me?" |[>
s :< "Why not? | >
sceneBlack()
"Good Ending."

def later(): Future[Unit] =

"I can't Eet up the nerve to ask right now. With a gulp, I decide to ask her later."” |>
sceneBlack() |>

"Bad Ending."

