
Ren’Py in Scala

Paul Tan and Bing You

https://github.com/pyokagan/DokiDokiCS4215

https://github.com/pyokagan/DokiDokiCS4215

Ren’Py

What is Ren’Py?

• A framework for writing visual
novels.
• Visual novels: Interactive text-based

stories aided by visuals and audio.

• Implemented in Python

• DSL: The Ren’Py Language
• A language tailored towards writing

screenplay interspersed with game
logic.

Declare characters used by this game.
define s = Character(_("Sylvie"), color="#c8ffc8")
define m = Character(_("Me"), color="#c8c8ff")

The game starts here.
label start:

scene bg uni with fade
"When we come out of the university, I spot her right away."
show sylvie green normal with dissolve
“Sylvie’s got a big heart and she's always been a good friend to me."
menu:

"As soon as she catches my eye, I decide..."
"To ask her right away.":

jump rightaway
"To ask her later.":

jump later

label rightaway:
show sylvie green smile
m "Are you going home now? Wanna walk back with me?"
s "Why not?"
scene black with dissolve
"{b}Good Ending{/b}."
return

label later:
"I can't get up the nerve to ask right now. With a gulp, I decide to ask her later."
scene black with dissolve
"{b}Bad Ending{/b}."
return

script.rpy

Ren’Py Script vs Stage Script

label rightaway:
show sylvie green smile
m "Are you going home now? Wanna walk back with me?"
s "Why not?"
scene black with dissolve
"{b}Good Ending{/b}."

Stage Directions

Stage Directions

Character

Character

Declare characters used by this game.
define s = Character(_("Sylvie"), color="#c8ffc8")
define m = Character(_("Me"), color="#c8c8ff")

The game starts here.
label start:

scene bg uni with fade
"When we come out of the university, I spot her right away."
show sylvie green normal with dissolve
“Sylvie’s got a big heart and she's always been a good friend to me."
menu:

"As soon as she catches my eye, I decide..."
"To ask her right away.":

jump rightaway
"To ask her later.":

jump later

label rightaway:
show sylvie green smile
m "Are you going home now? Wanna walk back with me?"
s "Why not?"
scene black with dissolve
"{b}Good Ending{/b}."
return

label later:
"I can't get up the nerve to ask right now. With a gulp, I decide to ask her later."
scene black with dissolve
"{b}Bad Ending{/b}."
return

Say Nodes Waits for user input before continuing
with execution.

Declare characters used by this game.
define s = Character(_("Sylvie"), color="#c8ffc8")
define m = Character(_("Me"), color="#c8c8ff")

The game starts here.
label start:

scene bg uni with fade
"When we come out of the university, I spot her right away."
show sylvie green normal with dissolve
“Sylvie’s got a big heart and she's always been a good friend to me."
menu:

"As soon as she catches my eye, I decide..."
"To ask her right away.":

jump rightaway
"To ask her later.":

jump later

label rightaway:
show sylvie green smile
m "Are you going home now? Wanna walk back with me?"
s "Why not?"
scene black with dissolve
"{b}Good Ending{/b}."
return

label later:
"I can't get up the nerve to ask right now. With a gulp, I decide to ask her later."
scene black with dissolve
"{b}Bad Ending{/b}."
return

Image Nodes

Declare characters used by this game.
define s = Character(_("Sylvie"), color="#c8ffc8")
define m = Character(_("Me"), color="#c8c8ff")

The game starts here.
label start:

scene bg uni with fade
"When we come out of the university, I spot her right away."
show sylvie green normal with dissolve
“Sylvie’s got a big heart and she's always been a good friend to me."
menu:

"As soon as she catches my eye, I decide..."
"To ask her right away.":

jump rightaway
"To ask her later.":

jump later

label rightaway:
show sylvie green smile
m "Are you going home now? Wanna walk back with me?"
s "Why not?"
scene black with dissolve
"{b}Good Ending{/b}."
return

label later:
"I can't get up the nerve to ask right now. With a gulp, I decide to ask her later."
scene black with dissolve
"{b}Bad Ending{/b}."
return

Menu Node

Declare characters used by this game.
define s = Character(_("Sylvie"), color="#c8ffc8")
define m = Character(_("Me"), color="#c8c8ff")

The game starts here.
label start:

scene bg uni with fade
"When we come out of the university, I spot her right away."
show sylvie green normal with dissolve
“Sylvie’s got a big heart and she's always been a good friend to me."
menu:

"As soon as she catches my eye, I decide..."
"To ask her right away.":

jump rightaway
"To ask her later.":

jump later

label rightaway:
show sylvie green smile
m "Are you going home now? Wanna walk back with me?"
s "Why not?"
scene black with dissolve
"{b}Good Ending{/b}."
return

label later:
"I can't get up the nerve to ask right now. With a gulp, I decide to ask her later."
scene black with dissolve
"{b}Bad Ending{/b}."
return

Label Nodes

Implementation

renpy.parserScript.rpy
Abstract

Syntax Tree

renpy.executionImplemented with
classical parser +
interpreter in Python

Now, let’s build it in Scala…

Declare characters used by this game.
define s = Character(_("Sylvie"), color="#c8ffc8")
define m = Character(_("Me"), color="#c8c8ff")

The game starts here.
label start:

scene bg uni with fade
"When we come out of the university, I spot her right away."
show sylvie green normal with dissolve
“Sylvie’s got a big heart and she's always been a good friend to me."
menu:

"As soon as she catches my eye, I decide..."
"To ask her right away.":

jump rightaway
"To ask her later.":

jump later

label rightaway:
show sylvie green smile
m "Are you going home now? Wanna walk back with me?"
s "Why not?"
scene black with dissolve
"{b}Good Ending{/b}."
return

label later:
"I can't get up the nerve to ask right now. With a gulp, I decide to ask her later."
scene black with dissolve
"{b}Bad Ending{/b}."
return

script.rpy

Game.scala

object Game {
// Declare characters used by this game.
val s = new Character("Sylvie", color = "#abcdef")
val m = new Character("Me", color = "#c8c8ff")

// The game starts here.
def run(): Future[Unit] =
scene("bg uni") |>
"When we come out of the university, I spot her right away." |>
show("sylvie green normal") |>
"Sylvie's got a big heart and she's always been a good friend to me." |>
menu("As soon as she catches my eye, I decide...",
("To ask her right away.", rightaway),
("To ask her later.", later))

def rightaway(): Future[Unit] =
show("sylvie green smile") |>
m :< "Are you going home now? Wanna walk back with me?" |>
s :< "Why not?" |>
sceneBlack() |>
"Good Ending."

def later(): Future[Unit] =
"I can't get up the nerve to ask right now. With a gulp, I decide to ask her later." |>
sceneBlack() |>
"Bad Ending."

}

What we need…

• A good implementation
programming language

• Windowing / User Input

• Graphics rendering
Java bindings for
GLFW, OpenGL

C Libraries!

Application architecture

Scene
2d scenegraph

Events
Event callback handling

High level DSL

Game

Engine subsystems

Scene subsystem

• Models 3d space in which objects
(scene nodes) can be placed in a
declarative manner.

• Scene library takes care of
rendering the objects (with 2d
projection) on the screen using
OpenGL.

• Scene nodes have position,
orientation, scale.

Scene nodes

val squareNode = new Scene.SquareNode()
squareNode.pose.scale.set(100f)
Scene += squareNode

val imageNode = new Scene.ImageNode("sylvie blue giggle")
Scene += imageNode

val textNode = new Scene.TextNode("Hello World!")
Scene += textNode

Scene Rendering

• OpenGL calls are executed based on contents of the scene graph, so
your objects are rendered on screen.

val squareNode = new Scene.SquareNode()
squareNode.pose.scale.set(100f)
Scene += squareNode

val vao = glGenVertexArrays()
glBindVertexArray(vao)
glBindBuffer(GL_ARRAY_BUFFER, arrayBuf)
glBufferData(GL_ARRAY_BUFFER, vertexData, GL_STATIC_DRAW)
val aPosLoc = program.getAttribLocation("aPos")
glVertexAttribPointer(aPosLoc, 2, GL_FLOAT, false, 8, 0)
glEnableVertexAttribArray(aPosLoc)
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, QuadElem.glBuf)
program.use()
program.setUniform("uMVPMatrix", uMVPMatrix)
program.setUniform("uColor", uColor)
program.setUniform("uOpacity", uOpacity)
glDrawElements(GL_TRIANGLES, 6, GL_UNSIGNED_SHORT, 0)
glBindVertexArray(0)

Events

• The Events subsystem maintains a set of callbacks for each event type

object Events {
val onKeyPress = scala.collection.mutable.HashSet.empty[Key => Unit]
val onMouseButtonPress = scala.collection.mutable.HashSet.empty[MouseButton => Unit]
val onTick = scala.collection.mutable.HashSet.empty[() => Unit]
...

Events.onKeyPress += (key => println("Key was pressed: " + key))

• E.g. to register a event handler:

Events – Game loop

• The Events subsystem also manages the event loop, which is the
central control flow construct of the program.

while (!glfwWindowShouldClose(window)) {
Events.runCallbacks()

// Logic ticks
val currentTime = glfwGetTime()
while (lastTick + TickPeriod < currentTime) {
Events.tick()
lastTick += TickPeriod

}

// Render

Scene.render()
glfwSwapBuffers(window)
glfwPollEvents()

}

Calls onKeyPress callbacks on key press,
onMouseButtonPress callbacks when mouse

button is pressed, etc.
Must be called periodically to process user

input in a timely manner.

Virtually an infinite loop – runs for
the entire lifetime of the program
(until the user closes the window)

Application architecture

Scene
2d scenegraph

Events
Event callback handling

High level DSL

Game

Engine subsystems

Type of DSL Implementations

• Standalone DSLs

• Deeply-embedded DSLs

• Shallowly-embedded DSLs

Standalone DSL

• What RenPy did: separate parser
and interpreter

• Lots of work to implement
• IDE, tooling support, syntax

highlighting, debuggers…

Deep embeddings of DSLs

• Construct an AST.

• AST is then traversed for evaluation.

Benefits:

• Can arbitrarily transform the AST
for e.g. optimization, implementing
complex non-compositional
semantics

Cons:

• More implementation work needed

Shallow embeddings of DSLs

• No AST constructed – terms are
immediately evaluated

Benefits:

• Implementation is trivial and
compact

Cons:

• Not as flexible – semantics must
be compositional (depends only
on semantics of components)

We aren’t trying to do anything fancy, so let’s
try implementing it using shallow embedding.

Overall Approach

• Use shallow embedding for implementation.
• Implement DSL syntax directly using evaluation functions

• Desired semantics: Asynchronous Actions
• We want to have different actions occurring concurrently (e.g. animation)
• At the same time, some actions need to wait on each other (e.g. wait for user input)
• Use existing Scala infrastructure: Futures and Promises

How to implement say(), show(),
menu()?

DSL API Design:

object Dsl {
case class Character(name: String, color: String)

// Say a message and wait for user input
def say(char: Character, msg: String): Future[Unit]
def say(msg: String): Future[Unit]

// Show a background image
def show(image: Texture): Future[Unit]

// Ask the user to make a choice. Execute the associated function and wait on its
completion.
def menu(msg: String, choices: (String, () => Future[Unit])): Future[Unit]

}

Futures and Promises

• Future: Read-only placeholder containing a value that may not yet
exist.

• Promise: Writable container that completes a Future

Futures and Promises

val p = Promise[T]()
val f = p.future

val producer = Future {
val r = createResource()
p success r
continueProducerExecution()

}

val consumer = Future {
startConsumerExecution()
f foreach { r =>
consumeResource()

}
}

(1) Create Promise containing Future

(3) producer creates resource and
continues execution

(2) Run producer and consumer
asynchronously

(4) consumer use up resource and
continues execution

producer execution is not blocked by consumer

consumer can receive resource before producer finishes execution

Implementation building blocks

• Create fundamental asynchronous execution functions based on
futures and promises
▪ waitForMouseButtonPress(), nextEvent()

• Build DSL functions based on said functions
▪ say(), show(), scene(), menu()

waitForMouseButton()

def waitForMouseButtonPress()(implicit ec: ExecutionContext): Future[Unit] = {
val promise = Promise[Unit]()
val cb = new Function1[MouseButton, Unit] {

def apply(mouseButton: MouseButton): Unit = {
if (mouseButton == MouseButtonLeft) {
Events.onMouseButtonPress -= this
promise.success(mouseButton)

}
}

}
Events.onMouseButtonPress += cb
promise.future

}

(1) Create promise containing Future
that will be completed later.

(2) Register mouse button press
callback with our events system

(3) Return the Future

(4) Remove mouse button press
callback from our events system

(5) Complete the Future

val charName = new Scene.TextNode {
maxWidth = 700f / 0.28f
pose.position.set(-380f, -205f, 20f)
pose.scale.set(0.28f, 0.28f, 1f)

}

val msgNode = new Scene.TextNode {
maxWidth = 700.0f / 0.25f
pose.position.set(-360f, -250f, 20f)
pose.scale.set(0.25f, 0.25f, 1f)

}

val textbox = new Scene.ImageNode("textbox") {
pose.position.set(0f, -268f, 10f)

}
say()

say()

def say(char: Character, msg: String)(implicit ec: ExecutionContext): Future[Unit] = {
Scene ++= Seq(textbox, charName, msgNode)
msgNode.text = msg
charName.text = char.name
charName.color = parseHexColour(char.color)
Events.waitForMouseButtonPress().flatMap(_ => {
Scene --= Seq(textbox, charName, msgNode)
Events.nextEvent()

})
}

(1) Add textbox, charName, msgNode to
Scene graph so that they will be

displayed, and set the msgNode text,
charName text and color

(2) Wait for left mouse button press

(3) Cleanup: Remove textbox, charName,
msgNode from scene graph so they are not

displayed any more.

Sequencing Futures with flatMap

• Future provides a flatMap() method allowing us to sequence
asynchronous operations.

def flatMap[S](f: (T) ⇒ Future[S]): Future[S]

Creates a new future by applying a function to the successful result of this future, and returns the result of
the function as the new future.

say("a").flatMap(() => say("b"))

Say “a”, wait for user input, and then say “b”.

Problem: Lots of flatMaps…
def run(): Future[Unit] =

scene("bg uni") flatMap
(_ => say("When we come out of the university, I spot her right away.")) flatMap
(_ => show("sylvie green normal")) flatMap
(_ => say("Sylvie's got a big heart and she's always been a good friend to me.")) flatMap
(_ => menu("As soon as she catches my eye, I decide...",
("To ask her right away.", rightaway),
("To ask her later.", later)))

The game starts here.
label start:

scene bg uni with fade
"When we come out of the university, I spot her right away."
show sylvie green normal with dissolve
“Sylvie’s got a big heart and she's always been a good friend to me."
menu:

"As soon as she catches my eye, I decide..."
"To ask her right away.":

jump rightaway
"To ask her later.":

jump later

Problem: Lots of flatMaps…
def run(): Future[Unit] =

scene("bg uni") flatMap
(_ => say("When we come out of the university, I spot her right away.")) flatMap
(_ => show("sylvie green normal")) flatMap
(_ => say("Sylvie's got a big heart and she's always been a good friend to me.")) flatMap
(_ => menu("As soon as she catches my eye, I decide...",
("To ask her right away.", rightaway),
("To ask her later.", later)))

The game starts here.
label start:

scene bg uni with fade
"When we come out of the university, I spot her right away."
show sylvie green normal with dissolve
“Sylvie’s got a big heart and she's always been a good friend to me."
menu:

"As soon as she catches my eye, I decide..."
"To ask her right away.":

jump rightaway
"To ask her later.":

jump later

Solution: Use Scala implicit classes to
implement a |> infix operator

object Dsl {
...
implicit class FutureWithDsl[T](a: Future[T]) {
def |>[S](b: => Future[S]): Future[S] =
a.flatMap(_ => b)

}
...

}

Use By-Name parameter -- Only evaluate RHS once the LHS has completed.

def run(): Future[Unit] =
scene("bg uni") |>
say("When we come out of the university, I spot her right away.") |>
show("sylvie green normal") |>
say("Sylvie's got a big heart and she's always been a good friend to me.") |>
menu("As soon as she catches my eye, I decide...",
("To ask her right away.", rightaway),
("To ask her later.", later))

|> starts with | which has the lowest
precedence (for symbol infix operators) in

Scala

Problem: say(), say(), say(), say()….

def run(): Future[Unit] =
scene("bg uni") |>
say("When we come out of the university, I spot her right away.") |>
show("sylvie green normal") |>
say("Sylvie's got a big heart and she's always been a good friend to me.") |>
menu("As soon as she catches my eye, I decide...",

("To ask her right away.", rightaway),
("To ask her later.", later))

label start:
scene bg uni with fade
"When we come out of the university, I spot her right away."
show sylvie green normal with dissolve
“Sylvie’s got a big heart and she's always been a good friend to me."
menu:

"As soon as she catches my eye, I decide..."
"To ask her right away.":

jump rightaway
"To ask her later.":

jump later

Problem: say(), say(), say(), say()….

def run(): Future[Unit] =
scene("bg uni") |>
say("When we come out of the university, I spot her right away.") |>
show("sylvie green normal") |>
say("Sylvie's got a big heart and she's always been a good friend to me.") |>
menu("As soon as she catches my eye, I decide...",

("To ask her right away.", rightaway),
("To ask her later.", later))

label start:
scene bg uni with fade
"When we come out of the university, I spot her right away."
show sylvie green normal with dissolve
“Sylvie’s got a big heart and she's always been a good friend to me."
menu:

"As soon as she catches my eye, I decide..."
"To ask her right away.":

jump rightaway
"To ask her later.":

jump later Must use say() in Scala but just plain
strings will do in Ren’Py – Scala version

has more syntactic overhead

Solution: Use Scala implicit classes (again) to
implement |> infix operator for Strings
object Dsl {
...
implicit class FutureWithDsl[T](a: Future[T]) {
def |>[S](b: => Future[S]): Future[S] =

a.flatMap(_ => b)
def |>(b: String): Future[Unit] =

a.flatMap(_ => say(b))
}

implicit class StringWithDsl[T](a: String) {
def |>[S](b: => Future[S]): Future[S] =

say(a).flatMap(_ => b)
def |>(b: String): Future[Unit] =

say(a).flatMap(_ => say(b))
}
...

}

Solution: Use Scala implicit classes (again) to
implement |> infix operator for Strings
def run(): Future[Unit] =

scene("bg uni") |>
"When we come out of the university, I spot her right away." |>
show("sylvie green normal") |>
"Sylvie's got a big heart and she's always been a good friend to me." |>
menu("As soon as she catches my eye, I decide...",
("To ask her right away.", rightaway),
("To ask her later.", later))

label start:
scene bg uni with fade
"When we come out of the university, I spot her right away."
show sylvie green normal with dissolve
“Sylvie’s got a big heart and she's always been a good friend to me."
menu:

"As soon as she catches my eye, I decide..."
"To ask her right away.":

jump rightaway
"To ask her later.":

jump later

Problem: say() with characters
val s = new Character("Sylvie", color = "#abcdef")
val m = new Character("Me", color = "#c8c8ff")

def rightaway(): Future[Unit] =
show("sylvie green smile") |>
say(m, "Are you going home now? Wanna walk back with me?") |>
say(s, "Why not?") |>
sceneBlack() |>
"Good Ending."

define s = Character(_("Sylvie"), color="#c8ffc8")
define m = Character(_("Me"), color="#c8c8ff")

label rightaway:
show sylvie green smile
m "Are you going home now? Wanna walk back with me?"
s "Why not?"
scene black with dissolve
"{b}Good Ending{/b}."
return

Problem: say() with characters
val s = new Character("Sylvie", color = "#abcdef")
val m = new Character("Me", color = "#c8c8ff")

def rightaway(): Future[Unit] =
show("sylvie green smile") |>
say(m, "Are you going home now? Wanna walk back with me?") |>
say(s, "Why not?") |>
sceneBlack() |>
"Good Ending."

define s = Character(_("Sylvie"), color="#c8ffc8")
define m = Character(_("Me"), color="#c8c8ff")

label rightaway:
show sylvie green smile
m "Are you going home now? Wanna walk back with me?"
s "Why not?"
scene black with dissolve
"{b}Good Ending{/b}."
return

Solution: Implement :< infix operator for
characters
• Scala’s syntax doesn’t allow us to implement Ren’Py’s exact syntax,

but we can get close by defining a lightweight infix operator :<

case class Character(name: String, color: String) {
def :<(m: String): Future[Unit] =

say(this, m)
}

def rightaway(): Future[Unit] =
show("sylvie green smile") |>
m :< "Are you going home now? Wanna walk back with me?" |>
s :< "Why not?" |>
sceneBlack() |>
"Good Ending."

Wrapping up

• Scala doesn’t allow us to implement Ren’Py’s syntax directly, however with generous use
of infix operators we can get pretty close to the spirit of a stage play script.

def rightaway(): Future[Unit] =
show("sylvie green smile") |>
m :< "Are you going home now? Wanna walk back with me?" |>
s :< "Why not?" |>
sceneBlack() |>
"Good Ending."

Characters
lined up on the

left

Stage directions use standard
function call syntax so that

they stand out.

Light-weight syntax for text (great
for text-heavy novels).

Conclusion

• We set out on a grand adventure to re-implement the RenPy DSL in
the best programming language in the world (Scala)

• To do that, we first implemented a simple 2d rendering and event
engine using LWJGL.

• Then, we used the shallow embedding implementation approach to
implement our high level DSL.

• Used Scala’s Futures and Promises to implement our DSL’s async
semantics.

• Gratuitously used Scala’s implicit classes to define our own infix
operators that can be used with existing Scala types.

Declare characters used by this game.
define s = Character(_("Sylvie"), color="#c8ffc8")
define m = Character(_("Me"), color="#c8c8ff")

The game starts here.
label start:

scene bg uni with fade
"When we come out of the university, I spot her right away."
show sylvie green normal with dissolve
“Sylvie’s got a big heart and she's always been a good friend to me."
menu:

"As soon as she catches my eye, I decide..."
"To ask her right away.":

jump rightaway
"To ask her later.":

jump later

label rightaway:
show sylvie green smile
m "Are you going home now? Wanna walk back with me?"
s "Why not?"
scene black with dissolve
"{b}Good Ending{/b}."
return

label later:
"I can't get up the nerve to ask right now. With a gulp, I decide to ask her later."
scene black with dissolve
"{b}Bad Ending{/b}."
return

script.rpy

Game.scala

object Game {
// Declare characters used by this game.
val s = new Character("Sylvie", color = "#abcdef")
val m = new Character("Me", color = "#c8c8ff")

// The game starts here.
def run(): Future[Unit] =
scene("bg uni") |>
"When we come out of the university, I spot her right away." |>
show("sylvie green normal") |>
"Sylvie's got a big heart and she's always been a good friend to me." |>
menu("As soon as she catches my eye, I decide...",
("To ask her right away.", rightaway),
("To ask her later.", later))

def rightaway(): Future[Unit] =
show("sylvie green smile") |>
m :< "Are you going home now? Wanna walk back with me?" |>
s :< "Why not?" |>
sceneBlack() |>
"Good Ending."

def later(): Future[Unit] =
"I can't get up the nerve to ask right now. With a gulp, I decide to ask her later." |>
sceneBlack() |>
"Bad Ending."

}

